Syllabus#
unit 1
- Data science in real life
- defining data science
- what data science people do
- data science in Business
-
use case for data science
-
Intro to R
- importance of R
- Datatype
- variables
- operators
- conditional statements
- loops
- R script
- functions in R
Unit 2
- Data Preprocessing
- Discrete random variables
- Continuous random variable
- Missing values
- Data-collection
- staging
- cleaning
- transformation
- consolidation
- data consistency
Unit 3
- Into to data visualization
- data visualization using Graphics in R
- use of colors, size, shape
- function of ggplot
- file formats of graphic Outputs
unit 4
- intro machine learning
- intro modern data analysis
- definition of machine learning
- classification
- K-nearest
- naive bayes
- decision tree
- evaluation of performance Measure
- Accuracy
- precision
Recall
F-measure
confusion-matrix
Kappa
learning curves-ROC - Regression Analysis
- Clustering
- Association rules
unit 5
- statistics for DAta Science
- discrete random variable
- continuos random variable
- MArkov-chain monte Cairo
- Descriptive Statistics
- sample covariance
- sample covariance matrix
- outlier
- bayesian classification
- central limit theorem
- data exploration and preparation
- confidence interval
- hypothesis-testing
- Z-score