Skip to content

Syllabus#

unit 1

  • Data science in real life
  • defining data science
  • what data science people do
  • data science in Business
  • use case for data science

  • Intro to R

  • importance of R
  • Datatype
  • variables
  • operators
  • conditional statements
  • loops
  • R script
  • functions in R

Unit 2

  • Data Preprocessing
  • Discrete random variables
  • Continuous random variable
  • Missing values
  • Data-collection
  • staging
  • cleaning
  • transformation
  • consolidation
  • data consistency

Unit 3

  • Into to data visualization
  • data visualization using Graphics in R
  • use of colors, size, shape
  • function of ggplot
  • file formats of graphic Outputs

unit 4

  • intro machine learning
  • intro modern data analysis
  • definition of machine learning
  • classification
  • K-nearest
  • naive bayes
  • decision tree
  • evaluation of performance Measure
  • Accuracy
  • precision
    Recall
    F-measure
    confusion-matrix
    Kappa
    learning curves-ROC
  • Regression Analysis
  • Clustering
  • Association rules

unit 5

  • statistics for DAta Science
  • discrete random variable
  • continuos random variable
  • MArkov-chain monte Cairo
  • Descriptive Statistics
  • sample covariance
  • sample covariance matrix
  • outlier
  • bayesian classification
  • central limit theorem
  • data exploration and preparation
  • confidence interval
  • hypothesis-testing
  • Z-score